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P R A N D T L - M E Y E R  E X P A N S I O N  OF A M I X T U R E  OF GASES 

W I T H  A L A R G E  D I S P A R I T Y  IN M O L E C U L A R  MASSES 

S. V. Dolgushev and V. M. Fomin UDC 533.6.011.8 

Inhomogeneous flow of a gas mixture consisting of molecules with a large disparity in molecular masses 
involves the temperature and velocity differences of the components [1-3]. The comparatively small rates of 
momentum and energy exchange between molecules of various kinds lead to establishment of the Maxwellian 
velocity distribution inside each component individually and to the absence of the common temperature 
and mean velocity of the mixture as a whole. In this case, the flow of the mixture can be regarded as a 
combination of local-equilibrium flows of individual components interacting between each other through the 
relaxation of the temperatures and mean velocities of the molecules. This model was called the theory of a 
two-fluid medium [4-6]. It yields an adequate description of the temperature--velocity nonequilibrium and a 
number of phenomena typical of mixtures, for example, the change of mechanisms of ultrasound propagation 
[7], noncoincidence of the density and temperature profiles of the components in a strong shock wave [6], 
and rotational alignment of the linear molecules in supersonic jets and molecular beams [8]. The slip of the 
components leads to local changes in the medium's composition, which allows the use of this phenomenon for 
separation of gas mixtures and isotopes [1-3]. 

One of the types of motion of a gas with a strong inhomogeneity of the parameters is the Prandtl-Meyer 
expansion [9]. A sudden expansion of the gas near the corner point occurs with frozen physical and chemical 
processes at distances of the order of the relaxation length. Further evolution of the flow and establishment 
of equilibrium is determined by a system of equations of gas dynamics and kinetics. 

In this paper, the flow of a helium-argon mixture with thermal and velocity nonequilibrium in a 
Prandtl-Meyer expansion fan and behind it near an inclined wall is studied numerically (using the method of 
characteristics and the conservative MacCormack scheme). We obtain the distributions of the flow parameters 
of individual components of the mixture with height above the surface of an inclined wall, which allow one 
to analyze the course of thermal and velocity relaxation and the changes in the mixture's composition, and 
also the qualitative pattern of separation of a small portion of the mixture into heavy and light components 
in flow about a corner point. 

1. Formula t ion  of the  P rob lem.  In Fig. 1, the ray OA which emanates from the corner point O is 
the fore front of a frozen helium-expansion fan which is ahead of the corresponding fronts of the equilibrium 
expansion fan of the mixture and of the frozen argon-expansion fan. An angle a01 is the Mach angle calculated 
from the frozen sound velocity of helium in a free stream (a01 = arcsin Mo 1, M01 = Vo/(TR1To) 1/2, M is the 
Mach number, V is the gas velocity, "y = 5/3 is the ratio of specific heats, R is a gas constant, and T is 
the temperature; the subscript 0 refers to the free-stream parameters, and the subscripts 1 and 2 indicate 
the parameters of the light and heavy components, respectively). The section of the ray OA is the upper 
boundary of the computational domain, and the section of the inclined wall O B  is its lower boundary. Figure 1 
does not show the forward and backward boundaries of the computational domain located, respectively, at 
small (~0.01 I01, where I01 is the mean free path of helium molecules, which is calculated for free-stream 
conditions) and sufficiently large (,-,2000 I01) distances downstream from the point O. The particular shape of 
these boundaries depends on the computation method used: for the method of characteristics, the boundaries 
are sections of the characteristics of the negative family of the light component, and for the MacCormack 
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scheme, they are lines perpendicular to the inclined wall. The free-stream parameters are specified as boundary 
conditions on the ray OA, the parameters of the frozen Prandtl-Meyer expansion of the mixture components 
are set for the forward boundary, and no boundary conditions are given for the backward boundary, since 
all characteristics appear there. The no-slip condition is specified on the wall OB, which in computation by 
the method of characteristics means the coincidence of the inclination angles of the components' velocities 
with the wall-inclination angle, and for the MacCormack scheme, it is approximated using the principle of 
reflection. 

Computations were performed for the free-stream Mach number M0 = 7 and 12, wall-inclination angle 
6 = 10 ~ p0 = 10 -2 N/m,  and To = 100 K. It turned out that for the model of a gas consisting of solid spheres, 
the results are not dependent on the concrete values of p0 and To if the flow is characterized by parameters 
normalized to the free-stream parameters, and spatial variables are measured in units of I01. 

2. E q u a t i o n s  of  T w o - F l u i d  Gas Dynamics .  Without considering viscosity and heat conduction, 
a steady planar motion of a gas mixture is governed by the system of equations of two-fluid gas dynamics in 
the Eulerian approximation [6]: 

Opitti OPivi 
~ + - -  =0 ;  

Oz Ov 

Oui Oui 1 Opi K 
~ ; + v i ~ +  -p, ~ = -  (~ i -~j ) ;  

Ovi Ovi 10pi K 
ui ~ + vi ~ + - ~ (vi - 

p, vj); 

(2.1) 

(2.2) 

(2.3) 

(2.4) ( or, 
nik ui "~z + vi Oy ] = -Pi  k Oz + Oy ] - q(r` - 7)) + ~eqK(Ui - Uj)2; 

,~ = p#(kr`) .  

Here n, p, and p are the particle density, mass density, and pressure, U is the velocity vector which has 
components (u, v) in the Cartesian coordinate system (x, y), k is the Boltzmann constant, and the subscripts 
i and j take on the values 1 and 2. Using the formulas presented in [6, 10], we obtain 

3R1 R2 r`/rni PiP2 T12 
q = R1 + R2 K, aeq = T1/ml + T2/rn2' K = piT2 + p2T1 D12(p, 7"1, T2)' 
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where m is the mass of a molecule and cq2 = 0.5(al + a2) is the effective collisional diameter of two different 
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molecules (al = 2.19- 10 -1~ m and a2 = 3.66.10 -1~ m). 
3. C o m p u t a t i o n s  by  t h e  M e t h o d  of  C h a r a c t e r i s t i c s .  If Mi > 1 for i = 1 and 2, the following 

characteristic relations are obtained from Eqs. (2.1)-(2.4): 

d J  + cos ai ft.+ 0.4 sin cti 
~ i  = piVi 2 "" P i ~  '~i; (3.1) 

d J -  _ cos ~._.___i/ 0.4 sin ai  
drl-'-~" = PiVi 2 II7 + pil,~ @i; (3.2) 

dS~ 2 r 
do'i - 3 piVi '  (3.3) 

dHi Xi + ~i  
do'i piVi 2 , i = 1, 2. (3.4) 

In (3.1)-(3.4), we have ~i = arcsin M71, Hi = hi + 0.5 Vi 2, hi = ( 7 / ( 3 ' -  1))pi/pi,  Vi 2 = u~ + v 2, Si = ln(pi/p~), 
J+ and J/- are determined by the differential relations d J ~  = dr -4- (cotancti/piVi2)dpi (r  is the angle 
of inclination of the velocity vector of the ith component  toward the free-stream direction), q~i = q(Ti - 
Tj) - ze i jK[V 2 + V22 - 2VIV~ cos (r - r H ! = K { ~ t a n a i  q= Tk~ cos (~bi - -  r162 - r 4- tanai]},  
Xi = I(~[l,'~ - ~ cos (r - r ~i, r/i, and ai are, respectively, the distances counted along the C +, Ci'- , and 
C O characteristics of system (2.1)-(2.4) which have angles of inclination toward the x-axis equal to r  ai, 
r  ai, and r In the free stream, with a moderate deviation from equilibrium, the Mach number  of the heavy 
component is considerably larger than the corresponding Mach number  of the light component  at a given point 
of space due to a substantial  difference in the frozen sound velocities of the components.  If the directions of 
the velocity vectors U1 and U2 are slightly different, the streamline of helium and all characteristics of argon 
coming to a certain point of the plane (x, y) are located between the C + and C i- characteristics of helium 
arriving at this point. 

This configuration of the characteristics is shown in Fig. 2. The solution is assumed to be known on the 
curve AB,  and the flow parameters should be calculated at the point C (the point C is the intersection of the 
helium Mach contours that  emanate  from the points A and B). Computat ions were mainly performed using 
the same scheme as in the usual method of characteristics for a one-fluid medium [11], and the search for the 
points of intersection with the curve A B  and a subsequent interpolation of the parameters for this point are 
performed not only for the helium streamline, but for all characteristics of argon. To find the coordinates of 
the point C and to calculate the increments of J+  and J~" on the sections A C  and B C ,  we employed the 
same iteration method of successive approximations as in the commonly used method  of characteristics [11]. 
Inside this iteration cycle, there was a Newtonian solution of a nonlinear system of characteristic difference 
equations that  relate all other flow parameters at the point C to the known solution at points D, E,  F ,  and G. 

The layer-by-layer computat ions using the method  of characteristics were performed, beginning with 
the C + characteristic of the frozen helium-expansion fan OA (see Fig. 1) and then passing to the other 
characteristics of this family. The step of the angular variable was Aqa = 10 -4 rad, and the step of the spatial 
variables w a s  A ~ I  and At/1 ,~ 0.05/01, where/01 = (21/2rrt0o'122) -1. The initial stage of computat ions  was fairly 
effective: 1-2 iterations were required for convergence of computat ions at each point of the mesh. However, the 
code efficiency was reduced further on, since a large number  of iterations were needed, and the computations 
were terminated. This is due to the fact that  at a certain stage of computat ion the configuration shown in 
Fig. 2 is distorted because of a strong nonequilibrium of flow near the corner point. 

In the course of computat ions,  the evolution of the streamlines of individual components  and the 
evolution of the mixture as a whole were traced by finding the isolines of the s tream functions of the 
components and also the overall stream function of the mixture. The initial values of the s tream functions 
were given on the initial-data curve OA (see Fig. 1) assuming that  a gas particle moves as a whole until this 
curve. 

The dashed curves in Fig. 1 show the argon streamlines, the dot-and-dashed curves indicate the 
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helium streamlines, and the solid curves show the streamlines of the mixture as a whole (the latter are the 
trajectories of the centers of mass of the mixture's initially integral particles). The above-presented picture 
of decomposition of the mixture's particles was obtained for 6 = 10 ~ M0 = 7, and the ratio of the molar 
concentrations of helium and argon was cl : c2 = 90 : 10. The distances between the particles numbered 1-3 
in Fig. 1 are 101, 2/01, and 3101 along the curve OA. Since the helium streamlines are more curved near the 
corner point O than the argon streamlines, the mixture is enriched in helium near the wall. The heavy-gas 
particles have a larger inertia, and their trajectories resemble the trajectories of the condensed-phase particles 
in two-phase flow past a convex corner. The effect of mixture separation is gradually at tenuated with distance 
from the wall and disappears at large distances from the corner point at which the flow is in equilibrium. 

4. C o m p u t a t i o n s  U s i n g  t h e  C o n s e r v a t i v e  M a c C o r m a c k  S c h e m e .  If we choose the Cartesian 
coordinate system in a way such that the z axis is directed along the inclined section of the wall and then 
move over to the coordinates (X, Y) fitted to the surface in flow and determined by the relations X = x, 
Y = y / ( tan  ~x), and/~ = a01 + [6[, relations (2.1)-(2.4) can then be transformed into the following conservative 
form: 

0E 0F 
o x  + b-F = G. (4.1) 

Here E = X t a n  Be, F = f -  Y tan  Be, G = X t a n  13g, e = (plul,plu~-t-pl,plUlVl,plulHl,p2u2,p2u 2 
+p2, p2u2v2, p2u2H2) t, f = (plvl, plulvl, plv~ + p~, p~vxH~, p2v2, p2u2v2, p2v~ + p2, p2v2H2) t, g = (0, Z, W, 
QI, 0,-z, -w, Q2) t, z = -g(.~ - ~2), W = -g(~ - ~2), and Q~ = -q(T~ - Tj) + ~jK[(.~ - .j)2 + (~ _ 

~j)2] _ g[~(~ - ~j) + ~(~ - ~)1 (i, j = i, 2). 
In the coordinate system (X,Y) in which the computational domain has a rectangular shape, 

the computations were performed using a semi-implicit MacCormack scheme [12], with the second-order 
approximation for both independent variables. The sequence of computations is commonly accepted for 
marching calculations of flow about corner configurations [13]. The section 0 ~ Y ~< 1 was split into 100 
equal parts, with AX ~ 0.4AY. 

Figures 3-5 show the results of computations for ~ = 10 ~ M0 = 7, and Cl :c2 = 50:50. The temperature 
of the components normalized to the free-stream temperature is shown in Fig. 3 as a function of Y for various 
values of X. The dashed curves refer to helium, the solid curves refer to argon, and curves 1 correspond to 
the frozen expansion of two gases near the corner point (X = 0.01 101). As X increases, the temperature of 
the components relaxes to a single equilibrium distribution. This is seen from the T1 (Y) and T2 (Y) plots 
for X = 70/01 (curve 2) and X = 500101 (curves 3). With X = 500101, T1 ~ T2 for all values of Y. If 
the concentration of one of the components is small (~1%), the distribution of the temperature of the main 
component Y is practically not dependent on X (the self-similar Prandtl-Meyer distribution takes place 
everywhere, and the temperature distribution of the seeded component relaxes to it). 
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The character of velocity relaxation of the components is given in Fig. 4, which shows the 
nondimensional velocity difference (Vi - V2)/(RoTo) 1/2 vs. Y (R0 is a gas constant of the mixture in the 
free stream). Curve 1 corresponds to the frozen expansion near the corner point, curve 2 refers to X = 7101, 
and curve 3 refers to X = 701Ol (the slip of the components practically vanishes in the larger part of the 
region of Y variation). 

Figure 5 shows the coefficient of enrichment of the mixture in helium e = (nl/n~)/(nl/n2)o vs. Y for 
various values of X. Curve 1 corresponds to the frozen flow near the corner point. The e (Y) plot becomes 
gently sloping with distance downstream from the point O along the wall OB, the maximum value ofe (Y = 0) 
is substantially reduced, and e = 1 in the main region of Y variation (0.1 ~< Y ~ 1). Curves 2 and 3 refer 
to the dependence e (Y) for X = 70101 and 12501ol. One can see that unlike the velocity and temperature 
relaxations, which are mainly completed at X ~ (100-500)101 from the corner point, the mixture near the 
wall (Y ~ 0.1) relaxes more slowly and, consequently, the mixture's composition near the wall is different 
from that in the free stream up to distances of ..,(1500-2000)lol from the point O. A gas layer with an 
increased content of helium is formed near the wall. The qualitative behavior of the coefficient of enrichment 
remains the same for various flow parameters and mixture composition. As the free-stream parameters 6 and 
M0 increase, the derivatives Oe/OX and ae/oY and the values of ~ (Y = 0) increase as well. 

5. Conclus ions .  The following conclusions can be drawn on the basis of the results obtained in the 
study presented. 

(1) A layer of mixture is formed near an inclined wall, in which the process of velocity and temperature 
relaxation of the components propagates over large distances from the corner point. In essence, this corresponds 
to the concept of the existence of a near-wall entropy (vortex) layer in the Prandtl-Meyer flow with arbitrary- 
type nonequilibrium processes [14]. 

(2) The near-wall gas layer is substantially enriched in the light component. The coefficient of 
enrichment increases with increasing the free-stream Mach number and the angle of rotation of the wall 
at the corner point. 

(3) The qualitative picture of divergence of the trajectories of the light and heavy components of a 
small portion of the mixture in the expansion fan is consistent with the inertial mechanism of separation of 
the mixture. 

(4) A qualitative difference is seen between the process of velocity and temperature relaxation in the 
mixture with high molar concentrations of both components and that in the mixture with a seeded component. 
In the first case, the relaxation process is accompanied by considerable changes in the parameters of both 
components which lead to establishing a general equilibrium, while in the second case, the parameters of the 
seeded component relax to the parameters of the carrier components, which can be considered unaffected by 
relaxation and governed by the self-similar Prandtl-Meyer solution for a pure gas. 
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